Deformability measurements on individual sickle cells using a new system with pO2 and temperature control.
نویسندگان
چکیده
Although the rheologic behavior of sickle erythrocytes (SS cells) is highly dependent on oxygen tension (pO2) and temperature, very little data exist regarding the effects of deoxygenation and reoxygenation on the rheology of "individual" SS cells at body temperature. We have devised and assessed a new experiment system, in which micropipette aspiration can be performed on individual cells in a constant-temperature chamber that has ports for changing media with different pO2 (effected in 30 to 120 seconds) and sensing probes for monitoring pO2 and temperature. This system enabled us to simultaneously alter and monitor pO2 at 37 +/- 0.5 degrees C, and to monitor and study a single cell under microscopic observation. The static rigidity (E) and dynamic rigidity (eta) of individual SS cells were determined by repeated aspirations of the same cell under various pO2. With stepwise reductions in pO2, E and eta showed no significant changes before sickling, but once sickled, their values markedly increased by 10(2)- to 10(3)-fold concomitantly with morphologic alteration of the cell. Thus, the deformability of a single SS cell behaves in an "all or none" manner at a critical pO2, and earlier studies on the effect of deoxygenation on the rheology of SS cell suspensions probably reflect the overall behavior of SS cells with widely distributed critical pO2.
منابع مشابه
Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation.
To assess the role of intracellular hemoglobin concentration in the deformability of sickle (HbSS) cells after deoxygenation, rheologic coefficients (static rigidity E and dynamic rigidity eta) of density-fractionated individual sickle erythrocytes (SS cells) were determined as a function of oxygen tension (pO2) using the micropipette technique in a newly developed experimental chamber. With st...
متن کاملEktacytometric measurement of sickle cell deformability as a continuous function of oxygen tension.
In an effort to study the rheologic effects of small amounts of hemoglobin S (HbS) polymer in sickle red cells, we have used the ektacytometer, a laser diffraction couette viscometer, to measure sickle cell deformability as a function of oxygen tension. Sickle cell populations of defined intracellular hemoglobin concentration (MCHC) were isolated using Stractan density gradients and were resusp...
متن کاملPolymerization of sickle cell hemoglobin at arterial oxygen saturation impairs erythrocyte deformability.
We have examined the filterability of sickle erythrocytes, using an initial-flow-rate method, to determine whether sufficient hemoglobin S polymer forms at arterial oxygen saturation to adversely affect erythrocyte deformability. The amount of intracellular polymer was calculated as a function of oxygen saturation to estimate the polymerization tendency for each of eight patients with sickle ce...
متن کاملMeasuring Deformability and Red Cell Heterogeneity in Blood by Ektacytometry.
Decreased red cell deformability is characteristic of several disorders. In some cases, the extent of defective deformability can predict severity of disease or occurrence of serious complications. Ektacytometry uses laser diffraction viscometry to measure the deformability of red blood cells subject to either increasing shear stress or an osmotic gradient at a constant value of applied shear s...
متن کاملSickling times of individual erythrocytes at zero Po2.
A rapid-reaction parallel-plate flow channel was used to study the kinetics of erythrocyte sickling upon sudden deoxygenation with sodium dithionite. The erythrocytes were recorded on 16-mm film or video tape and visually tracked in time. Sickling was identified by morphologic criteria. At the flow rate used in these studies, the rate of sickling was a reaction-limited process. There was no los...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 79 8 شماره
صفحات -
تاریخ انتشار 1992